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1. Background

Obscurant tests traditionally have placed heavy emphasis on the use of
broadband transmissometers in the characterization of optical properties
of test materials. The broadband transmissometry has many attractive
features, including high temporal resolution, relatively simple
instrumentation, and relatively small data storage requirements.
Unfortunately, it is impossible to match a transmissometer response
function to the muititude of electro-optical systems that must contend
with optically obscured battlefield environments. The inherent
broadband nature of many transmissometers, therefore, severely limits
the usefulness of such data. Researchers using such data are at a risk
of formulating erroneous results.

Transmittance measurements made with the Battiefield Environment
Directorate’s (BED) Mobile Atmospheric Spectrometer (MAS)
overcome this shortcoming of the broadband instruments. {2] While the
traditional transmissometer can obtain only one transmittance data point
per spectral window per time interval, a Fourier transform spectrometer
(FTS) can provide hundreds of transmittance data points per spectral
window per time interval. High-resolution FTS obscurant transmittance
spectra can be convolved with any infrared system response function
desired and thereby remove the uncertainty that accompanies the
comparison of transmissometers with differing response functions. The
result can be a more accurate prediction of the system performance.

The primary goal of the MAS support of Smoke Weck X!V was to
demonstrate the utility of spectrally resolved measurements in the
obscurant test setting. The transmittance and radiance spectra of the
obscurants and munitions have been made available to the scientific
community through the Atmospheric Aerosols and Optics Data Library
(AACDL). Nephelometer and transmittance data have been manipulated
to derive obscurant mass extinction coefficients for selected materials.
Figure 1 depicts the MAS.




Figure 1. Mobile Atmospheric Spectrometer (MAS).




2. Enhancements in Data Acquisition

Significant enhancements were employed at Smoke Week XIV. [5] At
Smoke Week XIII (1991) the spectrometer and host computer
communicated via a serial interface. Before the system was shipped to
Eglin Air Force Base for Smoke Week XIV (1992), a high-speed
parallel interface was installed. Because of the lack of time to become
% familiar with this upgrade, the system was not optimized to its fullest
k extent; however, the increase in data acquisition rates was exceptional.

A second enhancement dealt with the method for obtaining source and
path radiance spectra. During Smoke Week XIII tue telescope had to
repeatedly cycle from on-source to 0.5° off-source which changed the
background and was an inefficient use of time. For Smcke Week XIV
a source chopper was employed. Communications from the host
computer to the chopper were accomplished via communicaticns wire.
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3. Methodology

The transmittance of a sample of material at radiation frequency » is
defined as the ratio of the radiant power at frequency v exiting the
material to the radiant power at that frequency incident upon the
material

. (())
(v) o) o))

For an obscurant measurement, the transmittance through the path with
the obscurant relative to the clear air path is required rather than the
absolute transmittance of the entire path. The spreading factors and the
instrument response function remain unchange¢ when comparing the
path with the obscurant to the path without the obscurant; however, a
simpler measurement methodology can be applied. Without path
radiance and backgrounc effects, the relative transmittance of the
obscurant is the point-by-point ratio of the obscurant spectrum to the
clear air spectrum. Path radiance and background radiation may
contaminate the raw signals and thus must be removed.

L(») = Sy - Sbkg

and
I(”) = Sobs - Spnh;
therefore,
Sobs - Swh
TG) = ——. @
Sclw - Sbkg

All the quantities of S are functions of ».

An effective measurement methodology is to measure the four quantities
of S over as short an interval as practical. It is especially important for
the obscurant and path radiance data to be close together in time because
of the transient nature of the typical obscurant cloud. Clear air data




may be acquired befo.c or after the obscurant is present; but, in general,
pretrial clear air data are less likely to be contaminated by residual
obscurant that may not be obvious {0 an observer. In repetitive,
alternating sequence, obscurant spectra and path radiance spectra are
collected. Path radiance spectra can be obtained by blocking the source
or pointing the collecting telescope slightly off the source. Pointing the
collecting telescope slightly of the source was used at Smcke Week XIII.
To enhance the data acquisition rates, a source chopper was
incorporated into the system for Smoke Week XIV.




4. Instrumentation

4.1

The key components of the MAS for support of the activities at Smoke
Week XIV werz the FTS and the 31-in Coudé telescope.

Fourier Transform Spectrometer Configuration

The MAS FTS consists of 3 scanning Michelson interferonieter with
associated optics and control electronics and a dedicated computer
system. Depending on the deicctor, beamsplitter, and source in use, the
spectrometer can cover a segment of the spectral region from about 700
to 20,000 cm™ (0.5 to 14 um).

The Fourier spectrometer was configured with a potassium bromide
(KBr) substrate beamsplitter with a mercury-cadmium telluride MCT)
detector. The useful spectral coverage was about 800 to 5000 cm
(2t0 12.5 um). Although the instrument is capable of spectral
resolution as high as 0.04 cm’!, a resolution of 4 cm™ was used during
Smoke Week XIV. Very high resolution is not needed or practical for
most obscurant transmittance measurements because of time resolution
considerations.

There are 234 data points in the 800- to 1250-cm™ spectral region,
114 points in the 2020- to 2240-cm™ spectral region, 316 points in the
2390- to 3000-cm! spectral region, and 492 points in the 4050- to 5000-
cm! spectral region.

A factor in choosing the instrument configuration was that a KBr
beamsplitier was clearly the best choice for most mid-infrared work, but
KBr is hygroscopic. Great care must be exercised to avoid damage
during humid weather and especially during periods of precipitation.
Since a KBr beamsplitter was damaged beyond use during a period of
high humidity during Smoke Week XIII) both a replacement Kbr beam-
splitter and a moisture-insensitive (ZnSe) beamsplitter were in the MAS
inventory for Smoke Week XIV. The KBr beamsplitter was used during
all tests because the test site experienced good weather and the ZnSe
beamsplitter was insensitive to radiation shorter than 3 um.
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When time permitted, between trials, the data acquisition sequence for
each trial included high signal-to-noise ratio clear air source and clear
air background data. For all clear air data, 100 instrument scans were
coadded. Each interferogram required about 35 s to acquire, with
another 2.3 s required for transfer and storage. For most trials, clear
air data acquisition was initiated at about T - 3 min, and two complete
cycles were performed. When time permitted, a similar post-test clear
air acquisition sequence was carried out.

Obscurant and path radiance interferograms were obtained by coaddition
of two scans. Coaddition of twvo scans required 0.7 s. Transfer and
storage again required about 2.3 s per interferogram.  Each
interferogram, therefore, required 3 s to acquire and store. Each
complete measurement cycle of obscurant and path radiance interfero-
grams required 6 s.

Coaddition of multiple instrument scans serves two important functions:
(1) it improves the signal-to-noise ratio of the interferograms and the
resulting spectra (the signal-to-noise ratio increases proporticnally with
the square root of the number of instrument scans coadded), and (2) it
reduces the signal variation that results from atmospheric turbulence.

The usual MAS sources are a quartz-halogen lamp and a temperature
controlled blackbody that can reach 1000 °C. In either case, the
radiation is collimated with a modified searchlight. 'L he blackbody is
the source of choice for most of the mid-infrared region, while the lomp
provides better performance for wavelengths shorter than 2 um.
Therefore, the near-infrared and mid-infrared regions require different
sources, and only one region can be optimized at a time.

Coudé Telescope

The MAS Coudé-mounted telescope is a classical Cassegrain telescope
consisting of a 31-in diameter parabolic primary mirror and a 6-in
diameter hyperbolic secondary mirror. Segments of the optical path are
coaxial with the elevation and azimuth rotational axes of the telescope
so the heam position on the optical bench is invariant with respect to the
pointing,
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The telescope uses a sophisticated servo loop control system. The
angular resolution is 1.24 arc-s. A desktop computer provides the user
interface. A control program has been written to translate simplified
commands into valid telescope instructions. The telescope control
program provides the capability to fine-tune the pointing to optimize the
signal. Once the correct coordinates have been found, it is very easy 10
return to a given position with high precision.




5. Data Reduction

Programs written in Fortran were used to reduce all data, and MS-DOS-
based computers acted as hosts. Batch-oriented data analysis programs
were produced and fine-tuned before Smoke Week XIV.

Be.ause data acquisition required only 0.7 s, a data file can be thought
of as a snapshot of the changing spectrum at the time listed in the file
header.  The spectral intervals in which atmospheric opacity
significantly impaired the ability to retrieve the obscurant transmittance
are not included in the files, and breaks in the listings ar: used to
delineate the resulting discontinuities in the spectral coverage.

13




6. Analysis Eniiancements: Three-Dimensional
Spectroscopic Movie

With more than 9,000 spectra collected, the next significant task was
data analysis. In the past, the only means a researcher had to view data
were commercial plot packages in which a few spectra could be
displayed. A decision was made that with such a large volume of data
a new approach was required. The requirement evolved into a three-
dimensional (3-D) spectral movie that displays transmittance (or
radiance) versus spatial frequency as a function of time. Complete trials
incorporating hundreds of spectra may be viewed in a movie. The
aspect angle may be changed during operation. A version of the
program under development perinits the movie to be paused at any time,
reversed or zoomed.




7. Example Spectra

MAS spectra provide useful insight into the behavior of the obscurant
materials. Frequency dependence of the smoke transmittance that
cannot be observed with broadband transmissometers is readily apparent
in the spectra.

In general, in the mid-infrared, some materials exhibit only a smooth
falloff with increasing frequency. Others, however, exhibit a wealth of
interesting detail. Among the materials investigated were red
phosphorus (figures 2a, 2b), grephite (figure 3), kaolin (figure 4), brass
(figure 5), aluminum (figure 6) and silica (3-D figure 7). Radiance
spectra of munitions and a flare were taken at Smoke Week XIV. In the
3-D spectra of a fiare (figure 8), note the red spike (2240 cm™) and blue
spike (2390 cm™) due to heated atmospheric CO,. The presence of two
small emission features at 4275 and 4530 cm is also of interest, though
not understood at this time. Some fog oil spectra (figure 9) exhibit the
well-known C—H stretch vibrational-rotational band at about 2800 cm™,

17
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Figure 8. Radiance spectra of a flare.




Trial 02201
10:48:44.40
121 - 182
J
1.0 Py e 110
08} 108
o8| 06
F oo} {04
4
02 102
1000 2000 9000 4000 6000
Wavenumber

Figure 9. Transmittance spectra of fog oil.
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8. Determination of Selected Spectrally Resolved Mass
Extinction Coefficients

The MAS line of sight was in close proximity and parallel to the
nephelometer grid. As a result, obscurant concentration length (CL) as
determined from nephelometer data and transmittance as determined
from MAS data have been manipulated to derive spectrally resolved
mass extinction coefficients for selected obscurants. A word of caution
-- few coefficient spectra have been analyzed. The preliminary results
presented here may not be typical of all data. Mass extinction
coefficients have been derived from measurements made at Smoke Week
XIII (1991) using the ARL broadband Multipath Transmissometer/
Radiometer (MPTR). [3] These results, along with coefficients
maintained in the ARL Electro-Optical Systems Atmospheric Effects
Library (EOSAEL) [4] are compared with MAS derived data. The
MAS data show breaks where the atmosphere is opaque. As a result,
the data tend to become noisy at the break points. Also, since the MAS
detector response is peaked in the 8- to 12-um (800 to 1250 cm™)
region, the response is lower and the data are more noisy at shorter
wavelengths (higher frequencies). MAS and MPTR data compare
favorably for aluminum (figure 10). Results from MAS and EOSAEL
data for graphite (figure 11) also appear promising. The MPTR 3- to
5-um band average for brass (figure 12) differs from MAS data to some
extent. Compounding the problem, some researchers (Bruce, 1993)
report results as high as 1.8 m%*/g.”

The fog oil results (figure 13) demonstrate the utility of spectrally
resolved measurements. While the EOSAEL band averaged data
compare with the MAS data in the 8- {o 2-um regicn, the band average
in the 3- to 5-um region does not compare well with the spectraily
resolved MAS data. Fog oil exhibits the well-known hydrocarbon
stretch vibrational-rotational band at about 2800 cm',

*C. W. Bruce, 1993, Privatc communication, U.S. Army Research Laboratory, Battle-
field Environment Directorate, White Sands Missile Range, NM 88001-5501.




5 For a parzllel arrangement, nephelometer-based mass concentrations and
transmittance measurements are related according to Beer’s law:

T(t) = el-aCLit+an) (3)
where:
T = transmittance
t = time

At = time for cloud to mov~ from spectrometer line of sight to
nephelometer grid

a = Mass extinction coefficient in m?/g
CL = Concentration Length in g/m?

The concentration length is described as follows:

CL(t)= f C(r,0dr @)

where:

C(r,t) = Obscurant mass concentration at distance r along the
nephelometer grid at time t

dr = change in position

B T PET—

L = path length as determined by the nephelometers
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9. Concluding Remarks

All the reduced spectra were provided to the managers of the AAODL
database. Each spectrum was provided in two column, comma
delimited, ASCII format. The first column is the spatial frequency
(wave number) in centimeters™ of each point, and the second column is
the transmittance (percent) or radiance (W/cm?/sr/cm™).

Ainong the enhancements employed at Smoke Week XIV were a high-

speed parallel spectrometer-to-compnter interface and a mechanical

chopper at the blackbody source. While these enhancements were not
» fully optimized, they accounted for a dramatic increase in data
o acquisition rate and the total number of spectra obtained.

More than 9,000 spectra were collected, and analysis will be a
v significant task. A 3-D spectral movie that displays transmittance (or
radiance) versus spatial frequency as a function of time has been
developed, which allows the researcher to view complete trials
incorporating hundreds of spectra.

Characterization of obscurant mass extinction coefficients has
demonstrated the utility of spectrally resolved measurements.

. Recently, a new system has been added to the MAS inventory. The

: smaller, 4-wheel drive, off-road MAS ROVER provides greater mobility
for fenceline and general spectroscopic monitoring. All electronics are
powered by 2 banks of 12 V marine batteries. The portable
spectrometer with 0.26-m optics monitors in passive or active (double-
ended) modes.

27
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AAODL Atmospheric Aerosols and Optics Data Library
ARL Army Research Laboratory

BED Battlefield Environment Directorate

CL concentration length

EOSAEL Electro-Optical Systems Atmospheric Effects Library
FTS Fouricr transform spectrometer

KBr potassium bromide

MAS mobile atmospheric spectrometer
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MPTR multipath transmissometer/radiometer

ZnSe Zinc Selinidc
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